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1 Optimization Heuristic

A coherent comparison between chaining and single pooling requires first the optimization of their

total cost. In this section, we develop a greedy heuristic for the optimization step of the two models,

and prove their efficiency. The heuristic is a simulation based optimization method. Recall that for

each model, we optimize the total staffing cost under the constraints Wi ≤ W ∗
i , for i = 0, 1, ..., n.

The question addressed here is how can we compute the optimal number of agents in each

team? In some particular cases the answer is simple. For example when the arrival and service

rates are identical for all skills and when all skills have the same costs, we would create teams

with the same number of agents. A more difficult situation is in the case of asymmetric arrival or

service rates. For the simulation based optimization considered here, some information about the

simulation process are as follows. For a given simulation with a given set of parameters, we consider

a single replication that we run for a sufficiently long time. The lengths of the confidence intervals

for the different performance measures derived by simulation are in the order of 10−4. To obtain

such confidence intervals, we simply gradually increase the replication length up to the point that

ensures the accuracy objective. This implies that the simulation length may vary from one set of

parameters to another. The total number of generated calls varies and is in the order of tens of

millions. The delay to run a simulation also varies and is in the order of several minutes.

1.1 Single Pooling

In what follows we present three staffing heuristics, and then select the best one. The heuristics

consist of adaptations of greedy and local search algorithms.



Algorithm 1: Decreasing Greedy in Team 0

Without customers 0, single pooling is simply an FD model. A first idea of staffing is then to

use a decreasing greedy algorithm as follows. We start such that we have a collection of n + 1

independent M/M/s queues. In each team i, the number of agents is the minimum required one

to reach Wi ≤ W ∗
i = 0.2, for i = 0, 1, ..., n. In each iteration, we decrement the number of agents

in team 0 by one, and evaluate all Wi, for i = 0, 1, ..., n. We stop the algorithm when all the

service levels are no longer reached for the first time. We then consider the results of the before

last iteration. Table 7 presents the results of the decreasing greedy algorithm in a single pooling

model with 3 customer types, and compare it with the those of FF and FD models. The staffing

level in team i is denoted by si, i = 0, 1, 2.

Table 1: Decreasing greedy in team 0 for single pooling (n = 2, µi = µ0 = 0.2, W ∗
i = W ∗

0 = 0.2,
i = 1, 2)

Single pooling Total
λ1 λ2 λ0 FF FD s1 s2 s0 s0 + s1 + s2

1 0.5 0.2 13 19 9 6 0 15
0.2 0.5 1 13 19 4 6 5 15
1 1 1 20 27 9 9 5 23
3 2 1 36 44 20 15 5 40
2 1 3 36 44 15 9 18 42
0.5 0.2 0.1 8 13 6 4 0 10
0.1 0.2 0.5 8 13 3 4 2 9
10 5 15 151 171 57 31 83 171
10 15 5 151 171 57 83 30 170
10 10 10 151 171 57 57 57 171

Algorithm 2: Increasing Greedy

Another idea is to proceed by introducing customers 0 in the system step by step. We start from

an FD model with no customers 0, and we define the staffing level in team i such that Wi ≤ 0.2,

i = 1, ..., n (team 0 is being empty). In each iteration, we increase λ0 by a given small step value (we

have chosen in the experiments a sufficiently small step of λ0/100). If W0 ≥ W ∗
0 , we add one agent

in team 0. If W0 ≤ W ∗
0 and Wi > W ∗

i for some customer types, we then add an agent in the team

with the highest Wi. We stop the algorithm once λ0 reaches its value and the constraints Wi ≤ W ∗
i

are all satisfied, for i = 0, 1, ..., n. Table 8 provides the simulation results of this algorithm.

Algorithm 3: Increasing Greedy with No Agents in Team 0

The algorithm is identical to the previous one, expect that we force team 0 to be empty. Table 9

presents the simulated results for this algorithm.

From the results of all algorithms, we observe that the decreasing greedy algorithm (algorithm

1) is the worst. The reason is that it is not possible to increase or decrease the number of agents in
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Table 2: Increasing greedy for single pooling (n = 2, µi = µ0 = 0.2, W ∗
i = W ∗

0 = 0.2, i = 1, 2)

Single pooling Total
λ1 λ2 λ0 FF FD s1 s2 s0 s0 + s1 + s2

1 0.5 0.2 13 19 9 6 0 15
0.2 0.5 1 13 19 6 7 0 15
1 1 1 20 27 10 10 1 21
3 2 1 36 44 21 16 1 38
2 1 3 36 44 17 12 8 37
0.5 0.2 0.1 8 13 6 4 0 10
0.1 0.2 0.5 8 13 4 5 0 9
10 5 15 151 171 61 36 64 161
10 15 5 151 171 60 85 18 163
10 10 10 151 171 60 61 41 162

Table 3: Increasing greedy with no Agents in team 0 for single pooling (n = 2, µi = µ0 = 0.2,
W ∗

i = W ∗
0 = 0.2, i = 1, 2)

Single pooling Total
λ1 λ2 λ0 FF FD s1 s2 s0 s0 + s1 + s2

1 0.5 0.2 13 19 9 6 0 15
0.2 0.5 1 13 19 6 7 0 15
1 1 1 20 27 11 10 0 21
3 2 1 36 44 22 16 0 38
2 1 3 36 44 21 16 0 37
0.5 0.2 0.1 8 13 6 4 0 10
0.1 0.2 0.5 8 13 4 5 0 9
10 5 15 151 171 93 68 0 161
10 15 5 151 171 70 93 0 163
10 10 10 151 171 81 81 0 162

a regular team i (i = 1, ..., n). Many effective configurations could not then be reached under this

algorithm. The other two algorithms are equivalent in terms of the total number of agents in our

simulation experiments. We have chosen to use algorithm 2 in the experiments of Section 5 of the

main paper.

We go further in order to check the quality of algorithm 2. In Table 4, we provide optimization

results using algorithm 2 and also using other configurations with one agent in less. We observe

that these other configurations do not allow to satisfy all the constraints Wi ≤ W ∗
i = 0.2, for

i = 0, 1, ..., n, which proves the efficiency of algorithm 2.

1.2 Chaining

We also use a greedy algorithm to optimize the staffing cost of chaining. The simulation results

reveal that increasing and decreasing greedy algorithms are efficient and very similar if we start the

optimization heuristic with a good initialization of the team sizes. We choose to use a decreasing

greedy algorithm since it is faster than an increasing greedy one (no need to increase the λ0 with

a high number of small steps).
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Table 4: Efficiency of algorithm 2 (n = 2, µi = µ0 = 0.2, W ∗
i = W ∗

0 = 0.2, i = 1, 2)

s1 s2 s0 W1 W2 W0 Constraints

λ1 = 1, 9 6 0 0.123 0.126 0.019 Satisfied (algorithm 2)
λ2 = 0.5, 8 6 0 0.143 0.407 0.057 Not satisfied (one agent in less)
λ0 = 0.2 7 7 0 0.898 0.049 0.036 Not satisfied (one agent in less)

9 5 0 0.338 0.141 0.051 Not satisfied (one agent in less)

λ1 = 3, 21 16 1 0.174 0.154 0.110 Satisfied (algorithm 2)
λ2 = 2, 21 16 0 0.204 0.191 0.205 Not satisfied (one agent in less)
λ0 = 1 22 15 0 0.145 0.281 0.209 Not satisfied (one agent in less)

20 16 1 0.290 0.177 0.183 Not satisfied (one agent in less)
21 15 1 0.195 0.269 0.195 Not satisfied (one agent in less)

λ1 = 10, 60 85 18 0.152 0.171 0.167 Satisfied (algorithm 2)
λ2 = 15, 60 85 17 0.166 0.207 0.177 Not satisfied (one agent in less)
λ0 = 5 60 84 18 0.171 0.218 0.212 Not satisfied (one agent in less)

59 85 18 0.205 0.172 0.180 Not satisfied (one agent in less)
59 86 17 0.210 0.168 0.178 Not satisfied (one agent in less)

The method is as follows. In each team i (i = 0, 1, ..., n), we start with the worst (over-

estimated) staffing level si computed from an FD model. In order to take into account the chaining

configuration, i.e., the fact that customers type i− 1 can be routed to team i and customers type i

can be routed to team i+1, we adjust the initial staffing levels from si to s
′
i for team i (i = 0, 1, ..., n).

We use the method suggested by Wallace and Whitt (2005). The corrected staffing level s′i is given

by

s′i = si −Ri,i+1 +Ri−1,i, (1)

for i = 0, 1, ..., n, where Ri,j =
sisj
s−si

. This number is that of agents of team i who could go to team

j, i, j = 0, 1, ..., n and i ̸= j. Using Equation (1), s′i may not be an integer. We then round it to

the nearest integer above.

2 A Fixed Point Approximation for SP

We develop in this section an approximate numerical method for a particular case of single pooling.

We consider Markovian assumptions with an arbitrary number of skills. There are n+ 1 customer

types (type 0, and types 1, 2, ..., n), n teams (no team 0), n ≥ 1. The arrival rates are λ0 and

λi = λ for i = 1, ..., n, and the service rates are µi = µ for i = 0, 1, ..., n. Since the configuration

is symmetric, we consider the same staffing level s in each team. In what follows, we develop an

approximation to compute the expected waiting time of regular customers type i, for i = 1, ..., n.

The approximation is based on a Markov chain approach and a fixed point algorithm.

One can see that our model can be divided into n identical sub-systems. It suffices then to focus
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Figure 1: Markov chain associated to a sub-system of single pooling

on the performance analysis of one of these sub-systems. A sub-system is a simple queueing system

with s servers and an infinite queue. Two types of customers arrive to this sub-system: customers

type i with a Poisson process with rate λ and customers type 0 with a general arrival process with

mean arrival rate λ0
n . (The arrival process of customers 0 to the whole system is Poisson. However,

it becomes a general process at each sub-system because of the routing rules.)

Recall that customers 0 wait in their own queue before being routed to one of the sub-systems

for an immediate processing. Because of the routing rule, customers 0 can be routed to a sub-system

only if the number of customers in the sub-system is less or equal to s − 1. Also since we route

customers 0 to the one of the less busiest sub-systems (with an equiprobable choice), the arrival

rate of customers 0 is decreasing in the number of busy servers in a sub-system and it becomes 0

when all the s servers become busy.

Let us now define, for a sub-system, the stochastic process {E(t), t ≥ 0}, where E(t) denotes

the number of customers in the system (queue + service). Note that the customers in the queue

are only the regular customers, and those in service can be both regular or type 0 customers. We

approximate customers 0 inter-arrival times by an exponential distribution with state-dependent

rates. Since inter-arrival and service times are Markovian, {E(t), t ≥ 0} is a Markov chain as shown

in Figure 1. The arrival rate δk denotes the state-dependent arrival rate of customers 0 when the

number of customers in the sub-system is k, for k = 0, ..., s − 1 (no customers 0 arrive at the

sub-system for k ≥ s).

Assume that exactly s customers are in the sub-system and that a service completion occurs

first before the next arrival epoch of a regular customer at this sub-system (Figure 1). Therefore,

two possibilities may happen. The first possibility corresponds to the case of an empty queue 0.

We then move to state s− 1. The second one corresponds to the case of a non-empty queue 0. We

then stay in state s, because the server who just became idle immediately takes the customer 0 in

the head of queue 0 into service. Let us denote by β the probability that queue 0 is not empty.

Then the rate to move from state s to sate s− 1 in the Markov chain is sµ(1− β).

Let us now assume that the stability condition of a sub-system holds, i.e., λ + λ0
n < sµ, and
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denote the stationary probabilities of the system states by πk, for k ≥ 0. We may then write

πk =

∏k−1
i=0 (λ+ δi)

k!µk
π0, (2)

for 1 ≤ k ≤ s− 1, and

πs+k = (
λ

sµ
)k
∏s−1

i=0 (λ+ δi)

s!µs(1− β)
π0, (3)

for k ≥ 0. Since all probabilities sum up to one, we obtain

π0 =
1

1 +
∑s−1

k=1

∏k−1
i=0 (λ+δi)

k!µk +
∏s−1

i=0 (λ+δi)
s!µs(1−β)

1
1− λ

sµ

. (4)

The difficulty to compute the stationary probabilities is that we do not have the values of δk

(k = 0, ..., s−1) and β. We use a fixed point algorithm to jointly compute them with the stationary

probabilities. Let us now write δ0, the arrival rate of customers 0 at a given sub-system when this

sub-system is empty, as a function of the stationary probabilities of this sub-system. We use here

a second approximation. We indeed assume that the states of the sub-systems are independent,

which is not true. Assume that our sub-system is the only one that is empty, i.e., each one of the

other n − 1 sub-systems have at least one customer in the system (queue + service). Using the

approximation this occurs with probability (1− π0)
n−1, then δ0 is simply λ0 in that case. Assume

now that our sub-system and only another one are empty. Then δ0 is λ0
2 (equiprobable routing of

customers 0 to one of the less busiest sub-systems). This occurs with probability π0(1 − π0)
n−2

and there are
(
n−1
1

)
combinations (where

(
n
k

)
= n!

k!(n−k)! for 0 ≤ k ≤ n). Continuing with the same

reasoning and averaging over all possibilities, we obtain

δ0 = λ0

n−1∑
j=0

1

j + 1

(
n− 1

j

)
πj
0(1− π0)

n−1−j . (5)

Since 1
j+1

(
n−1
j

)
= 1

n

(
n

j+1

)
, Equation (5) becomes

δ0 =
λ0

n

n−1∑
j=0

(
n

j + 1

)
πj
0(1− π0)

n−1−j =
λ0

nπ0

n∑
j=1

(
n

j

)
πj
0(1− π0)

n−j ,

which leads to

δ0 = λ0
1− (1− π0)

n

nπ0
. (6)
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In the same way, we obtain

δk = λ0

(
1−

∑k−1
j=1 πj

)n
−
(
1−

∑k
j=1 πj

)n
nπk

, (7)

for 1 ≤ k ≤ s− 1. Let us now give the expression of β as a function of the stationary probabilities

πk, k ≥ 0. Since the mean arrival rate of customers 0 at our sub-system is λ0
n , we have

s−1∑
k=0

πkδk + βsµ =
λ0

n
, (8)

which implies

β =
λ0
n −

∑s−1
k=0 πkδk

sµ
. (9)

In summary, from the one hand, Equations (2)-(4) give the stationary probabilities πk (k ≥ 0)

as a function of δk (0 ≤ k ≤ s− 1) and β. From the other hand, Equations (6), (7) and (9) give δk

(0 ≤ k ≤ s − 1) and β as a function of πk (k ≥ 0). As a consequence, we have a fixed point. We

propose the following fixed point algorithm to compute it. In the first iteration, we choose δ0 =
λ0
n ,

δk = 0 for 1 ≤ k ≤ s− 1, and β = 0. Then we compute πk (k ≥ 0) using Equations (2)-(4). From

these πk, we next compute the new values of δk (0 ≤ k ≤ s− 1) and β using Equations (6), (7) and

(9). In the second iteration, we use the latter values of δk and β to compute πk. From these new

πk, we compute the new values of δk and β. We do the same in the third iteration, and so on. We

stop the algorithm when the values of πk (k ≥ 0), δk (0 ≤ k ≤ s− 1) and β converge to their limits

with a given predefined precision (we have chosen a precision of 10−6 in the numerical experiments

below). Proposition 1 proves the convergence of the fixed point algorithm.

Proposition 1 The fixed point algorithm always converges.

Proof. We use the Brouwer’s theorem to prove the convergence. The Brouwer’s theorem states

that any continuous function from a convex compact subset K of an Euclidean space to itself has

at least one fixed point. In what follows, we prove that the conditions of the Brouwer’s theorem

hold in our context.

After k iterations, the fixed point algorithm gives the vector (π0, π1, π2, · · · , πc)k belonging to

a convex compact, [0; 1]s+1, that is included in an Euclidean space, Rs+1. From Equations (2)-

(9), it is obvious to see that the function that allows to calculate (π0, π1, π2, · · · , πc)k+1 (iteration

k + 1) as a function of (π0, π1, π2, · · · , πc)k is continuous (combination of continuous functions),

for πk ̸= 0 (k = 0, ..., s − 1). In what follows, we prove that this function is continuous in πk = 0
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(k = 0, ..., s− 1) by prolongation. From Equations (6) and (7), we have

δk = λ0

(
1−

∑k−1
j=1 πj

)n
−
(
1−

∑k
j=1 πj

)n
nπk

= λ0

(
1−

∑k−1
j=1 πj

)n
nπk

1−

(
1−

∑k−1
j=1 πj

)n(
1−

∑k−1
j=1 πj

)n
 ,

for k = 0, ..., s−1, where by convention an empty sum is equal to 0. Calculating further, we obtain

δk = λ0

(
1−

∑k−1
j=1 πj

)n
nπk

(
1−

(
1− πk

1−
∑k−1

j=1 πj

)n)
,

for k = 0, ..., s− 1. The Taylor expansion of δk as a function of πk in the neighborhood of 0 is

δk = λ0

(
1−

∑k−1
j=1 πj

)n
nπk

(1− (1− n o(πk))) = λ0

1−
k−1∑
j=1

πj

n

+ o(1),

where o(1) is a function that converges to a finite limit as πk goes to 0, for k = 0, ..., s − 1. Since

λ0

(
1−

∑k−1
j=1 πj

)n
is finite, δk is continuous by prolongation in πk = 0, for k = 0, ..., s− 1.

It remains now to focus on the issue for β = 1 in Equation (4). This case of β = 1 can not hap-

pen. The proof is as follows. Assume that β = 1. Equation (8) thus leads to sµ = λ0
n −

∑s−1
k=0 πkδk.

Since δk and πk (0 ≤ k ≤ s−1) are positive, sµ ≤ λ0
n . As a consequence the sub-system is unstable,

which is absurd. This completes the proof of the convergence of the fixed point algorithm. 2

Having in hand the stationary probabilities, we next compute for the regular customers the

expected waiting time in the queue and the probability of delay. Recall that all sub-systems are

identical because of the symmetry in the parameters. Using Little’s law, the expected waiting time

of a regular customer type i (i = 1, ..., n) is given by

Wi =
1

λ

∞∑
k=1

kπs+k, (10)

for i = 1, ..., n, and its probability of delay denoted by PD,i is

PD,i =

∞∑
k=1

πs+k, (11)

for i = 1, ..., n. The approximation for both Wi and PD,i works very well for the regular customer

types, however it does not for customers 0 because of their complex routing. The comparison

between the approximate results using the fixed point algorithm and the exact ones using simulation
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Table 5: Fixed point approximation, µ = 0.2
Wi PD

λ λ0 s (λ+λ0)/n
sµ

Simulation Approximation Simulation Approximation

0.35 0.35 5 70% 0.581 0.581 37.78% 37.78%
0.475 0.475 5 95% 1.672 1.672 87.78% 87.78%

n = 1 1.4 1.4 20 70% 0.035 0.035 9.36% 9.36%
1.9 1.9 20 95% 0.359 0.359 75.54% 75.54%
3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 0.7 5 70% 0.436 0.435 29.74% 28.28%
0.475 0.95 5 95% 1.623 1.623 87.51% 85.23%

n = 2 1.4 2.8 20 70% 0.003 0.0027 0.74% 0.72%
1.9 3.8 20 95% 0.320 0.290 61.03% 60.98%
3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 1.75 5 70% 0.290 0.288 19.06% 18.76%
0.475 2.375 5 95% 1.556 1.550 81.84% 81.38%

n = 5 1.4 7 20 70% 0.001 0.001 0.28% 0.27%
1.9 9.5 20 95% 0.205 0.204 42.99% 42.97%
3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 3.5 5 70% 0.259 0.252 17.21% 16.39%
0.475 4.75 5 95% 1.516 1.504 79.07% 78.96%

n = 10 1.4 14 20 70% 0.0001 0.0001 0.23% 0.23%
1.9 19 20 95% 0.167 0.167 35.23% 35.21%
3.8 0 20 95% 3.777 3.777 75.54% 75.54%

are given in Table 13. Note that in the extreme situations of n = 1 or λ0 = 0, our method gives

the exact results. Table 13 reveals that our approximation yields very accurate estimates for Wi

and PD,i.

3 Impact of Abandonment

The experiments of Tables 6-9 are associated to Figures 10(a)-10(d) of the main paper, respec-

tively. The experiments of Tables 10-13 are associated to Figures 11(a)-11(d) of the main paper,

respectively.
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Table 6: Impact of p (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0 λi = 8, γi = γ0 = γ, i = 1, ..., 4,
p′ = 20%, U = V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 49 50.95 52.9 58.75 68.5 60 t=28.21%
10% 49 50.7 52.4 57.5 66 56 t=20.58%
25% 48 49.3 50.6 54.5 61 52 t=15.38%

γ = 0 50% 49 49.9 50.8 53.5 58 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 51 t=0%
90% 51 51.3 51.6 52.5 54 51 t=0%

0% 47 48.55 50.1 54.75 62.5 56 t=29.03%
10% 46 47.5 49 53.5 61 52 t=20.00%
25% 46 47.3 48.6 52.5 59 52 t=23.08%

γ = 0.1 50% 46 46.9 47.8 50.5 55 51 t=27.78%
75% 48 48.5 49 50.5 53 50 t=20.00%
90% 49 49.35 49.7 50.75 52.5 49 t=0.00%

0% 44 45.5 47 51.5 59 52 t=26.67%
10% 42 43.35 44.7 48.75 55.5 48 t=22.22%
25% 44 45.25 46.5 50.25 56.5 48 t=16.00%

γ = 0.2 50% 44 44.8 45.6 48 52 48 t=25.00%
75% 45 45.4 45.8 47 49 48 t=37.50%
90% 45 45.2 45.4 46 47 48 t=75.00%

4 Impact of the Number of Skills

The experiments of Tables 14 and 15 are associated to Figures 11(a) and 11 (b) of the main paper,

respectively.

5 Impact of the Agent Costs

We provide here the details of the analysis related to Section 5.8 of the main paper. We change

the cost framework such that the cost of regular agents are no longer identical. Our objective is to

examine the impact of an asymmetry in the costs on the comparison between the staffing costs of

SP and chaining. Consider a call center with n + 1 skills; the easy skill 0 and the regular skills i,

for i = 1, ..., n. We define a new parameter c for the cost framework. The higher is c, the higher is

the asymmetry in the agent costs, and viceversa.

In SP, an agent has skills i and 0, for i = 1, ..., n. We assume that the cheapest agents is that

with skills n and 0. She costs 1. Then, an agent with skills n−1 and 0 costs (1+c), ..., and an agent

with skills 1 and 0 costs (1 + c)n−1. In chaining, an agent has skills i and j, for i ̸= j ∈ {0, ..., n}.

An agent with skills i and 0 costs, as in SP, (1 + c)n−i, for i = 1, ..., n. An agent with skills i and

j costs (1 + c)n−i × (1 + c)n−j , for i ̸= j ∈ {1, ..., n}. In the experiments below, we consider a call

center with n = 4 regular skills and skill 0.

With this new cost framework, the choice of the two skills in chaining teams is very important. It
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Table 7: Impact of p′ (λi = λ0 = 2,
∑4

i=0
1
µi

= 25, W0 = W ∗
i = 0.2, i = 1, ..., 4, p = 20%,

U = V = 1)

Chaining SP Crossing value
p′ t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 60 62.45 64.9 72.25 84.5 72 t=24.49%
10% 59 60.95 62.9 68.75 78.5 67 t=20.51%
25% 58 59.65 61.3 66.25 74.5 62 t= 12.12%

γ = 0 50% 60 61.05 62.1 65.25 70.5 65 t=23.81%
75% 61 61.6 62.2 64 67 68 t=58.33%
90% 65 65.25 65.5 66.25 67.5 69 t=80.00%

0% 57 59.1 61.2 67.5 78 67 t=23.81%
10% 57 59.05 61.1 67.25 77.5 65 t=19.51%
25% 57 58.75 60.5 65.75 74.5 61 t=11.43%

γ = 0.1 50% 59 60.2 61.4 65 71 64 t=20.83%
75% 60 60.75 61.5 63.75 67.5 64 t=26.67%
90% 61 61.25 61.5 62.25 63.5 62 t=20.00%

0% 55 57.05 59.1 65.25 75.5 60 t=12.20%
10% 55 56.95 58.9 64.75 74.5 60 t=12.82%
25% 55 56.75 58.5 63.75 72.5 58 t=8.57%

γ = 0.2 50% 55 56.1 57.2 60.5 66 59 t=18.18%
75% 57 57.7 58.4 60.5 64 60 t=21.43%
90% 59 59.25 59.5 60.25 61.5 59 t=0.00%

has however no impact on SP. In chaining, the choice of one team skills may create various situations

with different asymmetry levels in the cost parameters. For instance, the most asymmetrical case

would be with the chain 3− 1− 2− 4− 0 where the individual costs vary from 1 to (1 + c)5. The

most symmetrical one would be with the chain 2 − 3 − 4 − 1 − 0 where the individual costs vary

from (1+ c) to (1+ c)3. in what follows, we compare between the staffing costs of SP and chaining.

For the latter, we consider both cases, the most asymmetric one referred to as MAC, and the less

asymmetric one referred to as LAC. The results are given in Tables 16-18 and Figure 2.
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(a) Preference zone (µ0 = µi = 0.2 for i = 1, ..., 4,∑4
i=0 λi = 8, U = V = 1, n = 4, W0 = W ∗

i = 0.2)
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(b) Preference zone (λi = λ0 = 2,
∑4

i=0
1
µi

= 25, W0 =

W ∗
i = 0.2, i = 1, ..., 4, p = 20%, U = V = 1, n = 4)

Figure 2: Preference zone

In Tables 16 and 17, we give the overall staffing costs as a function of c for SP, MAC and LAC

for different values of p and p′, respectively. We also detail the team staffing levels for the case

c = 10%. For c = 20% and c = 30% the detailed staffing levels are almost identical to the those
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Table 8: Impact of V (λ0 = 2, µ0 = µi = 0.2,
∑4

i=0 λi = 8, W0 = W ∗
i = 0.2, i = 1, ..., 4, p = 25%,

p′ = 20%, U = 1)

Chaining SP Crossing value
V t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

1 48 49.3 50.6 54.5 61 52 t=15.38%
γ = 0 2 49 50.3 51.6 55.5 62 53 t=15.38%

3 49 50.25 51.5 55.25 61.5 52 t=12.00%
5 50 51.25 52.5 56.25 62.5 52 t=8.00%

1 46 47.3 48.6 52.5 59 52 t=23.08%
γ = 0.1 2 46 47.25 48.5 52.25 58.5 51 t=20.00%

3 46 47.15 48.3 51.75 57.5 51 t=21.74%
5 46 47.1 48.2 51.5 57 51 t=22.73%

1 44 45.25 46.5 50.25 56.5 48 t=16.00%
γ = 0.2 2 45 46.25 47.5 51.25 57.5 51 t=24.00%

3 45 46.15 47.3 50.75 56.5 51 t=26.09%
5 46 47.05 48.1 51.25 56.5 52 t=28.57%

Table 9: Impact of U (µ0 = 0.2, λ0 = 4, λi = 1, W0 = W ∗
i = 0.2, i = 1, ..., 4,

∑4
i=0

1
µi

= 25,

p′ = 20%, p = 50%, V = 1)

Chaining SP Crossing value
U t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

1 49 50.25 51.5 55.25 61.5 52 t=12.00%
γ = 0 2 49 49.75 50.5 52.75 56.5 53 t=26.67%

3 50 51.65 52.3 54.25 57.5 52 t=7.69%
5 52 52.65 53.3 55.25 58.5 52 t=0.00%

1 46 46.9 47.8 50.5 55 51 t=27.78%
γ = 0.1 2 48 48.9 49.8 52.5 57 51 t=23.53%

3 50 50.85 51.7 54.25 58.5 51 t=5.88%
5 51 51.75 52.5 54.75 58.5 51 t=0.00%

1 44 44.8 45.6 48 52 48 t=25.00%
γ = 0.2 2 47 47.85 48.7 51.25 55.5 48 t=5.88%

3 49 49.8 50.6 53 57 49 t=0.00%
5 49 49.65 50.3 52.25 55.5 49 t=0.00%

for the case c = 10%. We observe that in SP we do not have enough flexibility to act on the team

staffing levels so as to reduce the overall costs. The explanation is that regular customers have

access to only one team.

For Chaining, MAC and LAC configurations have different team staffing levels and total staffing

costs. We observe that MAC is better when p or p′ is high (high predominance of the easy skill

or slow served customers 0). When p or p′ is high, the easy skill requires an important number

of agents. It is then interesting to organize the teams such that the cheap skills are handled by

the biggest teams (as MAC allows to do). This restricts the staffing levels of the expensive teams.

We also observe that LAC is better when p or p′ corresponds to a symmetrical situation (p = 25%

or p′ = 25%). Under a symmetrical situation of arrival and service rates, the team staffing levels

are likely to be balanced. Since (1 + c)n is convex in n, a symmetrical situation of costs is then
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Table 10: Impact of p (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0 λi = 8, i = 1, ..., 4, p′ = 20%,
U = V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 49 50.95 52.9 58.75 68.5 60 t=28.21%
10% 48 49.6 51.2 56 64 58 t=31.25%

γ0 = 0.1 25% 48 49.25 50.5 54.25 60.5 56 t=32.00%
γi = 0 50% 48 48.9 49.8 52.5 57 54 t=33.33%

75% 48 48.6 49.2 51 54 52 t=33.33%
90% 49 49.3 49.6 50.5 52 51 t=33.33%

0% 47 48.55 50.1 54.75 62.5 56 t=29.03%
10% 46 47.5 49 53.5 61 52 t=20.00%
25% 46 47.3 48.6 52.5 59 52 t=23.08%

γi = γ0 = 0.1 50% 46 46.9 47.8 50.5 55 51 t=27.78%
75% 48 48.5 49 50.5 53 50 t=20.00%
90% 49 49.35 49.7 50.75 52.5 49 t=0.00%

0% 47 48.55 50.1 54.75 62.5 56 t=29.03%
10% 48 49.3 50.6 54.5 61 54 t=23.08%

γ0 = 0 25% 48 49.25 50.5 54.25 60.5 52 t=16.00%
γi = 0.1 50% 48 48.85 49.7 52.25 56.5 52 t=23.53%

75% 49 49.75 50.5 52.75 56.5 51 t=13.33%
90% 49 49,3 49,6 50,5 52 49 t=0,00%

preferred to another with a mix of expensive and cheap teams.

In Figure 2 and Table 18, we present the switching curves under which chaining (MAC or LAC)

is less expensive than SP, and above which the opposite is true. Figure 2(a) reveals that SP is

better than LAC as p increases. This agrees with the results in the main paper where also the

cost framework is symmetrical. We also observe that MAC is preferred to SP under asymmetrical

situations of arrival rates. The reason is again related to the flexibility of MAC for creating large

cheap teams.

As for the impact of p′, we observe from Figure 2(b) the opposite conclusions as those drawn

above for p. The switching curve for the comparison between SP and MAC is similar to the one

obtained in the main paper. The explanation is still related both to the blocking effect and the

preference for asymmetrical cost framework for MAC, when the service rates are different. We

also observe that the switching curve for the comparison between SP and LAC is not regular. The

reason is that there are two competing phenomena. From the one hand, the blocking effect due

to customers 0 implies a preference for LAC. From the other hand, the performance of chaining

deteriorates under a symmetrical cost framework and asymmetrical service rate situations.
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Table 11: Impact of p′ (λ0 = λi = 2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0
1
µi

= 25, i = 1, ..., 4, p = 20%,
U = V = 1)

Chaining SP Crossing value
p′ t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 60 62.25 64.5 71.25 82.5 72 t=26.67%
10% 58 60 62 68 78 66 t=20.00%

γ0 = 0.1 25% 58 59.5 61 65.5 73 65 t=23.33%
γi = 0 50% 58 59.2 60.4 64 70 65 t=29.17%

75% 58 58.6 59.2 61 64 66 t=66.67%
90% 59 59.25 59.5 60.25 61.5 68 t=180.00%

0% 57 59.1 61.2 67.5 78 67 t=23.81%
10% 57 59.05 61.1 67.25 77.5 65 t=19.51%
25% 57 58.75 60.5 65.75 74.5 61 t=11.43%

γ0 = γi = 0.1 50% 59 60.2 61.4 65 71 64 t=20.83%
75% 60 60.75 61.5 63.75 67.5 64 t=26.67%
90% 61 61.25 61.5 62.25 63.5 62 t=20.00%

0% 57 59.15 61.3 67.75 78.5 66 t=20.93%
10% 56 57.85 59.7 65.25 74.5 61 t=13.51%

γ0 = 0 25% 57 58.35 59.7 63.75 70.5 61 t=14.81%
γi = 0.1 50% 58 59.05 60.1 63.25 68.5 63 t=23.81%

75% 60 60.75 61.5 63.75 67.5 65 t=33.33%
90% 63 63.25 63.5 64.25 65.5 65 t=40.00%
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Table 12: Impact of V (λ0 = 2, W ∗
0 = W ∗

i = 0.2, µi = µ0 = 0.2, i = 1, ..., 4, p = 25%, p′ = 20%,
U = 1)

Chaining SP Crossing value
V t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

1 48 49.4 50.8 55 62 53 t=17.86%
γ0 = 0.1 2 49 50.3 51.6 55.5 62 53 t=15.38%
γi = 0 3 50 51.15 52.3 55.75 61.5 53 t=13.04%

5 52 53.05 54.1 57.25 62.5 54 t=9.52%

1 46 47.3 48.6 52.5 59 52 t=23.08%
γ0 = γi = 0.1 2 46 47.25 48.5 52.25 58.5 51 t=20.00%

3 46 47.15 48.3 51.75 57.5 51 t=21.74%
5 46 47.1 48.2 51.5 57 51 t=22.73%

1 47 48.35 49.7 53.75 60.5 52 t=18.52%
γ0 = 0 2 47 48.15 49.3 52.75 58.5 51 t=17.39%
γi = 0.1 3 47 48 49 52 57 51 t=20.00%

5 47 47.85 48.7 51.25 55.5 52 t=29.41%

Table 13: Impact of U (λ0 = 4, W ∗
0 = W ∗

i = 0.2, µ0 = 0.2, i = 1, ..., 4, p = 50%, p′ = 20%, V = 1)

Chaining SP Crossing value
U t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

1 47 47.95 48.9 51.75 56.5 52 t=26.32%
γ0 = 0.1 2 48 48.8 49.6 52 56 53 t=31.25%
γi = 0 3 48 48.85 49.7 52.25 56.5 52 t=23.53%

5 48 48.9 49.8 52.5 57 52 t=22.22%

1 46 46.9 47.8 50.5 55 51 t=27.78%
γi = γ0 = 0.1 2 48 48.9 49.8 52.5 57 51 t=23.53%

3 50 50.85 51.7 54.25 58.5 51 t=5.88%
5 51 51.75 52.5 54.75 58.5 51 t=0.00%

1 48 48.85 49.7 52.25 56.5 52 t=23.53%
γ0 = 0 2 48 48.7 49.4 51.5 55 49 t=7.14%
γi = 0.1 3 49 49.9 50.8 53.5 58 50 t=5.56%

5 50 51 52 55 60 51 t=5.00%
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Table 14: Impact of the number of skills (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑n

i=0 λi/N = 2,
i = 1, ..., n, U = V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 36 37.8 39.6 45 54 40 t=11.11%
10% 37 38.05 39.1 42.25 47.5 40 t=14.29%
25% 37 37.75 38.5 40.75 44.5 39 t=13.33%

N = 3 50% 37 37.4 37.8 39 41 37 t=0.00%
75% 36 36.15 36.3 36.75 37.5 36 t=0.00%
90% 36 36.05 36.1 36.25 36.5 36 t=0.00%
100% 36 36 36 36 36 36 t=0.00%

0% 48 49.95 51.9 57.75 67.5 54 t=15.38%
10% 48 49.45 50.9 55.25 62.5 52 t=13.79%
25% 47 48.15 49.3 52.75 58.5 50 t=13.04%

N = 4 50% 48 48.8 49.6 52 56 48 t=0.00%
75% 48 48.5 49 50.5 53 48 t=0.00%
90% 47 47.25 47.5 48.25 49.5 47 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 60 62.55 65.1 72.75 85.5 68 t=15.69%
10% 59 61 63 69 79 67 t=20.00%
25% 58 59.6 61.2 66 74 64 t=18.75%

N = 5 50% 59 60.1 61.2 64.5 70 61 t=9.09%
75% 60 60.75 61.5 63.75 67.5 61 t=6.67%
90% 61 61.3 61.6 62.5 64 61 t=0.00%
100% 57 57 57 57 57 57 t=0.00%

0% 116 121 126 141 166 144 t=28.00%
10% 115 119.6 124.2 138 161 135 t=21.74%
25% 115 118.8 122.6 134 153 126 t=14.47%

N = 10 50% 117 119.75 122.5 130.75 144.5 117 t=0.00%
75% 120 121.65 123.3 128.25 136.5 114 t=-18.18%
90% 122 122.95 123.9 126.75 131.5 110 t=-63.16%
100% 109 109 109 109 109 109 t=0.00%
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Table 15: Impact of p, t and N on the staffing cost (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑n

i=0 λi = 8,
i = 1, ..., n, U = V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 47 49.35 51.7 58.75 70.5 52 t=10.64%
10% 47 48.45 49.9 54.25 61.5 49 t=6.90%
25% 47 47.95 48.9 51.75 56.5 48 t=5.26%

N = 3 50% 47 47.5 48 49.5 52 47 t=0.00%
75% 47 47.2 47.4 48 49 47 t=0.00%
90% 47 47.05 47.1 47.25 47.5 47 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 48 49.95 51.9 57.75 67.5 54 t=15.38%
10% 48 49.45 50.9 55.25 62.5 52 t=13.79%
25% 47 48.15 49.3 52.75 58.5 50 t=13.04%

N = 4 50% 48 48.8 49.6 52 56 48 t=0.00%
75% 48 48.5 49 50.5 53 48 t=0.00%
90% 47 47.25 47.5 48.25 49.5 47 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 49 51.3 53.6 60.5 72 60 t=23.91%
10% 49 50.7 52.4 57.5 66 56 t=20.59%
25% 48 49.3 50.6 54.5 61 52 t=15.38%

N = 5 50% 49 49.9 50.8 53.5 58 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 51 t=0.00%
90% 51 51.3 51.6 52.5 54 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 58 60.65 63.3 71.25 84.5 72 t=26.42%
10% 55 57.2 59.4 66 77 72 t=38.64%
25% 55 56.85 58.7 64.25 73.5 63 t=21.62%

N = 10 50% 56 57.45 58.9 63.25 70.5 60 t=13.79%
75% 57 57.95 58.9 61.75 66.5 56 t=-5.26%
90% 56 56.6 57.2 59 62 55 t=-8.33%
100% 47 47 47 47 47 47 t=0.00%
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Table 16: Impact of c (µ0 = µi = 0.2 for i = 1, ..., 4,
∑4

i=0 λi = 8, U = V = 1, n = 4, W0 = W ∗
i =

0.2)

Single Pooling
c = 10% c = 0% c = 10% c = 20% c = 30%

p s1 s2 s3 s4 s0 Total staffing cost

0% 15 15 15 15 0 60 69.615 80.520 92.805
10% 14 14 14 14 0 56 64.974 75.152 86.618
25% 13 13 13 13 0 52 60.333 69.784 80.431
50% 13 13 13 13 0 52 60.333 69.784 80.431
75% 12 13 13 13 0 51 59.002 68.056 78.234
90% 12 13 13 13 0 51 59.002 68.056 78.234

Most Asymmetrical Chaining (MAC)
c = 10% c = 0% c = 10% c = 20% c = 30%

p s1 s2 s3 s4 s0 Total staffing cost

0% 6 12 11 16 4 49 66.631 89.663 119.337
10% 5 12 9 13 10 49 64.449 84.638 110.645
25% 8 9 6 11 14 48 60.798 77.256 98.148
50% 12 7 3 8 19 49 59.732 73.236 90.015
75% 12 3 2 6 28 51 58.845 68.573 80.498
90% 14 2 1 3 31 51 57.803 66.148 76.253

Less Asymmetrical Chaining (LAC)
c = 10% c = 0% c = 10% c = 20% c = 30%

p s1 s2 s3 s4 s0 Total staffing cost

0% 10 11 13 15 0 49 90.922 74.928 90.922
10% 10 11 11 12 5 49 92.716 75.984 92.716
25% 12 7 10 9 10 48 90.402 74.208 90.402
50% 15 5 7 6 16 49 93.769 76.656 93.769
75% 20 3 5 2 20 50 95.225 78.000 95.225
90% 23 2 2 2 22 51 98.592 80.448 98.592
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Table 17: Impact of c (λi = λ0 = 2,
∑4

i=0
1
µi

= 25, W0 = W ∗
i = 0.2, i = 1, ..., 4, p = 20%,

U = V = 1, n = 4)

Single Pooling
c = 10% c = 0% c = 10% c = 20% c = 30%

p′ s1 s2 s3 s4 s0 Total staffing cost

0% 18 18 18 18 0 72 83.538 96.624 111.366
10% 16 17 17 17 0 67 77.566 89.528 102.982
25% 15 15 16 16 0 62 71.715 82.720 95.105
50% 16 17 17 17 0 67 77.566 89.528 102.982
75% 17 17 17 17 0 68 78.897 91.256 105.179
90% 17 17 17 18 0 69 79.897 92.256 106.179

Most Asymmetrical Chaining (MAC)
c = 10% c = 0% c = 10% c = 20% c = 30%

p′ s1 s2 s3 s4 s0 Total staffing cost

0% 5 17 15 17 6 60 82.272 111.696 149.963
10% 9 13 12 14 11 59 78.278 103.529 136.117
25% 11 11 9 13 14 58 74.971 96.932 124.970
50% 17 7 6 8 22 60 74.219 92.341 115.139
75% 21 3 4 5 28 61 72.835 87.662 106.007
90% 26 2 1 2 34 65 75.565 88.444 103.927

Less Asymmetrical Chaining (LAC)
c = 10% c = 0% c = 10% c = 20% c = 30%

p′ s1 s2 s3 s4 s0 Total staffing cost

0% 6 15 20 14 5 60 74.514 91.392 110.838
10% 10 13 14 12 10 59 74.085 91.680 111.995
25% 13 10 13 10 12 58 72.622 89.616 109.174
50% 20 7 8 6 19 60 75.592 93.696 114.504
75% 25 4 4 4 24 61 77.242 96.096 117.754
90% 32 1 2 2 28 65 82.181 102.048 124.787

Table 18: Crossing value of c (U = V = 1, W0 = W ∗
i = 0.2, for i = 1, ..., 4)

Impact of p Impact of p′

(µ0 = µi = 0.2 for i = 1, ..., 4,
∑4

i=0 λi = 8) (λi = λ0 = 2 for i = 1, ..., 4,
∑4

i=0
1
µi

= 25)

p SP = MAC SP = LAC p′ SP = MAC SP = LAC

0% 12.84% 34.39% 0% 10.93% 31.02%
10% 10.64% 18.23% 10% 9.35% 16.37%
25% 9.16% 10.49% 25% 6.06% 8.34%
50% 11.82% 6.96% 50% 15.98% 13.53%
75% 14.01% 2.18% 75% 28.46% 12.47%
90% 47.82% 0.00% 90% 38.41% 6.51%
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